
      

�The theory of probabilities is simply the Science of logic

quantitatively treated. – C.S. PEIRCE �

13.1  Introduction

In earlier Classes, we have studied the probability as a
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful
in understanding the Bayes' theorem, multiplication rule of
probability and independence of events. We shall also learn
an  important concept of  random variable and its probability
distribution and also the mean and variance of a probability  distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called  Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2  Conditional Probability

Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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Since the coins are fair, we can assign the probability  
1

8
  to each sample point. Let

E be the event ‘at least two heads appear’ and  F be the event ‘first coin shows tail’.

Then

E = {HHH, HHT, HTH, THH}

and F = {THH, THT, TTH, TTT}

Therefore P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})

=
1 1 1 1 1

8 8 8 8 2
� � � ✁  (Why ?)

and P(F) = P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})

=
1 1 1 1 1

8 8 8 8 2
✂ ✂ ✂ ✄

Also E ☎ F = {THH}

with P(E ☎ F) = P({THH}) = 
1

8

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is

the probability of occurrence of E? With the information of occurrence of F, we are

sure that the cases in which first coin does not result into a tail should not be considered

while finding the probability of E. This information reduces our sample space from the

set S to its subset F for the event E. In other words, the additional information really

amounts to telling us that the situation may be considered as being that of a new

random experiment for which the sample space consists of all those outcomes only

which are favourable to the occurrence of the event F.

Now, the sample point of F which is favourable to event E is THH.

Thus, Probability of E considering F as the sample space = 
1

4
,

or Probability of E given that the event F has occurred = 
1

4

This probability of the event E is called the conditional probability of E given

that F has already occurred, and is denoted by P (E|F).

Thus P(E|F) =
1

4

Note that the elements of F which favour the event E are the common elements of

E and F, i.e. the sample points of E ☎ F.
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Thus, we can also write the conditional probability of E given that F has occurred as

P(E|F) =
Number of elementaryeventsfavourable to E F

Number of elementaryevents which arefavourable to F

�

=
(E F)

(F)

n

n

✁

Dividing the numerator and the denominator by total number of elementary events

of the sample space, we see that P(E|F) can also be written as

P(E|F) =

(E F)

P(E F)(S)

(F) P(F)

(S)

n

n

n

n

✂

✂
✄ ... (1)

Note that (1) is valid only when P(F) ☎ 0 i.e., F ☎ ✆ (Why?)

Thus, we can define the conditional probability as follows :

Definition 1 If  E and F are two events associated with the same sample space of a

random experiment, the conditional probability of the event E given that F has occurred,

i.e. P (E|F) is given by

P(E|F) =
P(E F)

P(F)

✁
 provided P(F) ☎ 0

13.2.1  Properties of conditional probability

Let E and F be events of a sample space S of an experiment, then we have

Property 1 P (S|F) = P(F|F) = 1

We know that

P (S|F) =
P(S F) P(F)

1
P(F) P(F)

✁
✝ ✝

Also P(F|F) =
P(F F) P(F)

1
P(F) P(F)

✁
✝ ✝

Thus P(S|F) = P(F|F) = 1

Property 2 If A and B are any two events of a sample space S and F is an event

of S such that P(F) ☎ 0, then

P((A ✞ B)|F) = P(A|F) + P(B|F) – P ((A ✟ B)|F)
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In particular, if A and B are disjoint events, then

P((A✆B)|F) = P(A|F) + P(B|F)

We have

P((A✆B)|F) =
P[(A B) F]

P(F)

� ✁

=
P[(A F) (B F)]

P(F)

✂ ✄ ✂

(by distributive law of union of sets over  intersection)

=
P(A F)+P(B F) – P(A B F)

P(F)

✂ ✂ ✂ ✂

=
P(A F) P(B F) P[(A B) F]

P(F) P(F) P(F)

✁ ✁ ✁ ✁
☎ ✝

= P(A|F) + P(B|F) – P ((A✞B)|F)

When A and B are disjoint events, then

P((A ✞ B)|F) = 0

✟ P((A ✆ B)|F) = P(A|F) + P (B|F)

Property 3 P (E✠|F) = 1 ❾ P (E|F)

From Property 1, we know that P (S|F) = 1

✟ P(E ✆ E✠|F) = 1    since  S = E ✆ E✠

✟ P(E|F) + P (E✠|F) = 1     since E and E✠ are disjoint events

Thus, P(E✠|F) = 1 ❾ P(E|F)

Let us now take up some examples.

Example 1 If P (A) = 
7

13
, P (B) = 

9

13
 and P (A ✞ B) = 

4

13
, evaluate P(A|B).

Solution We have 

4

P(A B) 413P(A|B)=
9P(B) 9

13

✁
✡ ✡

Example 2 A family has two children. What is the probability that both the children are

boys given that at least one of them is a boy ?


